Integrate the given series expansion of f\displaystyle {f}  term-by-term from zero to x\displaystyle {x}  to obtain the corresponding series expansion for the indefinite integral of f\displaystyle {f}.

f(x)=2x(1+x2)2=n=0(1)n2nx2n1\displaystyle {f{{\left({x}\right)}}}=\frac{{-{2}{x}}}{{\left({1}+{x}^{{2}}\right)}^{{2}}}={\sum_{{{n}={0}}}^{{\infty}}}{\left(-{1}\right)}^{{n}}{2}{n}{x}^{{{2}{n}-{1}}}

0xf(t)dt=n=1\displaystyle {\int_{{0}}^{{x}}}{f{{\left({t}\right)}}}{\left.{d}{t}\right.}={\sum_{{{n}={1}}}^{{\infty}}}