Compute the value of the improper integral. (If the integral diverges to \displaystyle \infty, type oo; if the integral diverges to \displaystyle -\infty, type -oo; and if the integral diverges for some other reason, type DNE.)

2dx7x+8=\displaystyle {\int_{{2}}^{{\infty}}}\frac{{{\left.{d}{x}\right.}}}{{\sqrt{{{7}{x}+{8}}}}}=  


Use your answer to help determine whether the series n=217n+8\displaystyle {\sum_{{{n}={2}}}^{{\infty}}}\frac{{{1}}}{{\sqrt{{{7}{n}+{8}}}}} converges or diverges. Enter C if the series is convergent, D if the series is divergent, or ? if the Integral Test does not apply: