Answer the following True or False:
Suppose that an≥0\displaystyle {a}_{{n}}\ge{0}an≥0 for all n\displaystyle {n}n and that ∑n=1∞(an)2\displaystyle {\sum_{{{n}={1}}}^{{\infty}}}{\left({a}_{{n}}\right)}^{{2}}n=1∑∞(an)2 converges. Then ∑n=1∞an\displaystyle {\sum_{{{n}={1}}}^{{\infty}}}{a}_{{n}}n=1∑∞an also converges.
Submit Try another version of this question