Let C\displaystyle {C} be the curve y=4x\displaystyle {y}={4}\sqrt{{{x}}} for 1.8x4.2\displaystyle {1.8}\le{x}\le{4.2}.

1234512345678

Find the surface area of revolution about the x\displaystyle {x}-axis of C\displaystyle {C}.

3dsurface

Surface area =1.84.2f(x) dx\displaystyle ={\int_{{1.8}}^{{4.2}}}{f{{\left({x}\right)}}}\ {\left.{d}{x}\right.} where

f(x)=\displaystyle {f{{\left({x}\right)}}}=  

Write your answer in this format: 2π4x+424\displaystyle {2}\pi\cdot{4}\sqrt{{{x}+\frac{{4}^{{2}}}{{4}}}}

Now integrate to find surface area

Surface area =1.84.2f(x) dx=\displaystyle ={\int_{{1.8}}^{{4.2}}}{f{{\left({x}\right)}}}\ {\left.{d}{x}\right.}=