Write the the function f(x)=2x216x+35\displaystyle {f{{\left({x}\right)}}}=-{2}{x}^{{2}}-{16}{x}+{35} in the form f(x)=a(xp)2+q\displaystyle {f{{\left({x}\right)}}}={a}{\left({x}-{p}\right)}^{{2}}+{q} by completing the square:

1. We take out the coefficient of x2,\displaystyle {x}^{{2}}, a,\displaystyle {a}, as a factor from the first two terms:

f(x)=\displaystyle {f{{\left({x}\right)}}}=(x2+\displaystyle {\left({x}^{{2}}+\right.} x)+35\displaystyle {x}{)}+{35}

2. Then we add half of the coefficient of x\displaystyle {x} squared, (b2)2\displaystyle {\left(\frac{{b}}{{2}}\right)}^{{2}}, inside the bracket and subtract it outside a\displaystyle {a} times, a(b2)2\displaystyle {a}{\left(\frac{{b}}{{2}}\right)}^{{2}}.

f(x)=\displaystyle {f{{\left({x}\right)}}}=(x2+\displaystyle {\left({x}^{{2}}+\right.}x+\displaystyle {x}+)+35\displaystyle {)}+{35}-

3. Then we factorize the bracket and simplify outside the bracket.

f(x)=\displaystyle {f{{\left({x}\right)}}}=(x+\displaystyle {\left({x}+\right.})2+\displaystyle {)}^{{2}}+

Videos:

Completing the square