A hyperbola with equation of (x+4)2a2(y+4)2b2=1\displaystyle \frac{{\left({x}+{4}\right)}^{{2}}}{{a}^{{2}}}-\frac{{\left({y}+{4}\right)}^{{2}}}{{b}^{{2}}}={1} has an asymptote with equation of y=98x+12\displaystyle {y}=\frac{{9}}{{8}}{x}+\frac{{1}}{{2}}. Find the smallest possible whole number values for a\displaystyle {a} and b\displaystyle {b}.

a=\displaystyle {a}=  
b=\displaystyle {b}=