Enable text based alternatives for graph display and drawing entry

Try another version of this question

Find `y'` by (a) applying the Product Rule and (b) multiplying the factors to produce a sum of simpler terms to differentiate.

`y=(3-x^2)(x^3+4x-3)`

(a) Apply the Product Rule. Let `u=3-x^2` and `v=x^3+4x-3`.

`d/dx(uv)=(3-x^2)(`   `)+(x^3+4x-3)(`   `)`

(b) Multiply the factors of the original expression, `u` and `v`, to produce a sum of simpler terms.

`y=`  

(c) Find `y'`

`y'=`  



Get help:


X
MathQuill
   x  x    n  |   | (   ) π DNE
   x    (   ) π DNE
( ) ( ] [ ) [ ] —∞ DNE
< > or All Real Numbers DNE
log logn ln n  | | e 
sin cos tan arcsin arccos arctan  
[more..]